Summary
This paper discusses the role of light, melatonin, and brain circuitry in regulating sleep and wakefulness, and how these factors can affect alertness and cognitive performance.
Categories
Sleep and insomnia: The paper discusses the regulation of sleep and wakefulness, and how factors such as light and melatonin can affect these processes.
Alertness and performance: The paper explores how the regulation of sleep and wakefulness can affect alertness and cognitive performance.
Cognitive function and memory: The paper discusses how the regulation of sleep and wakefulness can affect cognitive function.
Shift work: The paper mentions the challenges faced by shift workers who are forced to be awake at biologically non-optimal times.
Phototherapy: The paper discusses the effects of light on human wakefulness and its potential applications in non-clinical settings.
Hormone regulation: The paper discusses the role of the hormone melatonin in regulating sleep and wakefulness.
Author(s)
C Cajochen, S Chellappa, C Schmidt
Publication Year
2010
Number of Citations
87
Related Publications
Sleep and insomnia
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- The impact of light from computer monitors on melatonin levels in college students
Alertness and performance
- The two‐process model of sleep regulation: a reappraisal
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- Acute alerting effects of light: A systematic literature review
- Can light make us bright? Effects of light on cognition and sleep
- Shining light on memory: Effects of bright light on working memory performance
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Shift work
- Circadian rhythms–from genes to physiology and disease
- The end of night: searching for natural darkness in an age of artificial light
- Off the clock: from circadian disruption to metabolic disease
- Short‐wavelength enrichment of polychromatic light enhances human melatonin suppression potency
- Nocturnal light exposure impairs affective responses in a wavelength-dependent manner
Phototherapy
- Phototransduction by retinal ganglion cells that set the circadian clock
- Strange vision: ganglion cells as circadian photoreceptors
- Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice
- Lux vs. wavelength in light treatment of Seasonal Affective Disorder
- Short‐wavelength enrichment of polychromatic light enhances human melatonin suppression potency
Hormone regulation
- Phototransduction by retinal ganglion cells that set the circadian clock
- The impact of light from computer monitors on melatonin levels in college students
- Circadian rhythms–from genes to physiology and disease
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Light pollution, circadian photoreception, and melatonin in vertebrates