Summary
This paper investigates the skin as a potential model of peripheral clock by characterizing its rhythmic and synchronization properties.
Categories
Cognitive function and memory: The paper discusses the role of the skin as a peripheral clock model, which is relevant to cognitive function and memory as it contributes to the understanding of circadian rhythms and their impact on cognitive processes.
Aging: The paper explores the maturation and aging of the skin clock, providing insights into how aging affects circadian rhythms in the skin.
Hormone regulation: The paper discusses the synchronizing effects of melatonin on the skin clock, highlighting the role of hormones in regulating circadian rhythms.
Lighting Design Considerations: The paper's investigation into the skin as a peripheral clock model may have implications for lighting design considerations, as light is a major external signal for the clock.
Well-being: Understanding the skin's role as a peripheral clock model contributes to the broader understanding of circadian rhythms, which are crucial for overall well-being.
Author(s)
T Liu
Publication Year
2014
Related Publications
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The twoāprocess model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Aging
- Light therapy and Alzheimer's disease and related dementia: past, present, and future
- Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice
- Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease
- Neuroprotective strategies for retinal ganglion cell degeneration: current status and challenges ahead
- Combinatorial effects of alpha-and gamma-protocadherins on neuronal survival and dendritic self-avoidance
Hormone regulation
- Phototransduction by retinal ganglion cells that set the circadian clock
- The impact of light from computer monitors on melatonin levels in college students
- Circadian rhythmsāfrom genes to physiology and disease
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Light pollution, circadian photoreception, and melatonin in vertebrates
Lighting Design Considerations
- Color appearance models
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Acute alerting effects of light: A systematic literature review
- Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision
- Melanopsin and rodācone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans
Well-being
- Acute alerting effects of light: A systematic literature review
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Can light make us bright? Effects of light on cognition and sleep
- Light pollution, circadian photoreception, and melatonin in vertebrates
- Kruithof's rule revisited using LED illumination