Summary
This paper discusses the role of voltage-gated potassium channels in generating different activity profiles during the day and night, and how disruption of these channels can affect sleep patterns and overall health.
Categories
Cognitive function and memory: The paper discusses how disruption of circadian rhythms, which are linked to cognitive function and memory, can lead to health problems.
Sleep and insomnia: The paper explores how disruption of voltage-gated potassium channels, which are involved in circadian rhythms, can affect sleep patterns.
Depression: The paper mentions that disruption of circadian rhythms has been linked with health problems such as depression.
Diabetes and metabolic syndrome: The paper mentions that disruption of circadian rhythms has been linked with health problems such as diabetes.
Cancer treatment and prevention: The paper mentions that disruption of circadian rhythms has been linked with health problems such as cancer.
Well-being: The paper discusses how circadian rhythms are vital to health and wellbeing, and how their disruption can lead to various health problems.
Author(s)
P Smith
Publication Year
2019
Related Publications
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Sleep and insomnia
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- The impact of light from computer monitors on melatonin levels in college students
Depression
- The two‐process model of sleep regulation: a reappraisal
- Light therapy and Alzheimer's disease and related dementia: past, present, and future
- Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease
- Nocturnal light exposure impairs affective responses in a wavelength-dependent manner
- Photoreception for circadian, neuroendocrine, and neurobehavioral regulation
Diabetes and metabolic syndrome
- Endocrine regulation of circadian physiology
- Neurogenetic basis for circadian regulation of metabolism by the hypothalamus
- Spare the rods and spoil the retina: revisited
- Effect of experimental diabetic retinopathy on the non-image-forming visual system
- Cardio-ankle vascular index and indices of diabetic polyneuropathy in patients with type 2 diabetes
Cancer treatment and prevention
- The end of night: searching for natural darkness in an age of artificial light
- Light during darkness and cancer: relationships in circadian photoreception and tumor biology
- Molecular regulations of circadian rhythm and implications for physiology and diseases
- Light pollution and cancer
- Phospholipase C families: Common themes and versatility in physiology and pathology
Well-being
- Acute alerting effects of light: A systematic literature review
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Can light make us bright? Effects of light on cognition and sleep
- Light pollution, circadian photoreception, and melatonin in vertebrates
- Kruithof's rule revisited using LED illumination