Summary
The paper discusses the role of circadian and circannual rhythms in the onset of migraines, focusing on the hypothalamus and the role of melatonin, and presents potential clinical applications of PACAP.
Categories
Dementia: The paper mentions that bright light therapy, which is related to circadian rhythms, may improve the quality of life in patients with Alzheimer’s disease.
Sleep and insomnia: The paper discusses the role of the hypothalamus in regulating sleep and wake cycles, and how disruptions in these cycles may trigger migraines.
Cognitive function and memory: The paper discusses the role of the hypothalamus, which is involved in cognitive functions, in the onset of migraines.
Seasonal affective disorder: The paper discusses how changes in photoperiods, which are related to seasonal affective disorder, can affect the hypothalamus and potentially trigger migraines.
Phototherapy: The paper discusses the use of bright light therapy for various conditions, including migraines, seasonal affective disorder, and Alzheimer’s disease.
Hormone regulation: The paper discusses the role of various hormones, including melatonin, in the regulation of circadian rhythms and the onset of migraines.
Lighting Design Considerations: The paper discusses how light exposure and changes in photoperiods can affect the hypothalamus and potentially trigger migraines.
Author(s)
N Imai
Publication Year
2023
Related Publications
Dementia
- Photoreception for circadian, neuroendocrine, and neurobehavioral regulation
- New strategies for neuroprotection in glaucoma, a disease that affects the central nervous system
- Sleep and circadian rhythms in Parkinson's disease and preclinical models
- Chronobioengineering indoor lighting to enhance facilities for ageing and Alzheimer's disorder
- The effects of light and the circadian system on rhythmic brain function
Sleep and insomnia
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- The impact of light from computer monitors on melatonin levels in college students
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Seasonal affective disorder
- Lux vs. wavelength in light treatment of Seasonal Affective Disorder
- High prevalence of seasonal affective disorder among persons with severe visual impairment
- Neuroimaging the effects of light on non-visual brain functions
- A possible role of perinatal light in mood disorders and internal cancers: reconciliation of instability and latitude concepts
- Daily and seasonal variation in light exposure among the Old Order Amish
Phototherapy
- Phototransduction by retinal ganglion cells that set the circadian clock
- Strange vision: ganglion cells as circadian photoreceptors
- Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice
- Lux vs. wavelength in light treatment of Seasonal Affective Disorder
- Short‐wavelength enrichment of polychromatic light enhances human melatonin suppression potency
Hormone regulation
- Phototransduction by retinal ganglion cells that set the circadian clock
- The impact of light from computer monitors on melatonin levels in college students
- Circadian rhythms–from genes to physiology and disease
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Light pollution, circadian photoreception, and melatonin in vertebrates
Lighting Design Considerations
- Color appearance models
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Acute alerting effects of light: A systematic literature review
- Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision
- Melanopsin and rod–cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans