Summary
This paper discusses the role of intrinsically photosensitive retinal ganglion cells (ipRGCs) in vertebrates, their evolution, and their function in non-visual photoreception and regulation of various light-driven non-visual functions.
Categories
Cognitive function and memory: The paper discusses the role of ipRGCs in transmitting information to the brain, which is relevant to cognitive function.
Sleep and insomnia: The paper mentions the role of ipRGCs in regulating sleep and other non-visual functions.
Seasonal affective disorder: The paper discusses how alterations in lighting conditions can cause seasonal depression, which is treated with phototherapy.
Phototherapy: The paper discusses the use of phototherapy in treating seasonal depression caused by alterations in lighting conditions.
Hormone regulation: The paper discusses the role of ipRGCs in the light inhibition of the hormone melatonin.
Lighting Design Considerations: The paper discusses how different lighting conditions can affect physiology and behavior, which is relevant to lighting design considerations.
Well-being: The paper discusses how light detection and regulation of various non-visual functions by ipRGCs can affect the overall well-being of an individual.
Author(s)
ME Guido
Publication Year
2020
Related Publications
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The twoāprocess model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Sleep and insomnia
- The twoāprocess model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- The impact of light from computer monitors on melatonin levels in college students
Seasonal affective disorder
- Lux vs. wavelength in light treatment of Seasonal Affective Disorder
- High prevalence of seasonal affective disorder among persons with severe visual impairment
- Neuroimaging the effects of light on non-visual brain functions
- A possible role of perinatal light in mood disorders and internal cancers: reconciliation of instability and latitude concepts
- Daily and seasonal variation in light exposure among the Old Order Amish
Phototherapy
- Phototransduction by retinal ganglion cells that set the circadian clock
- Strange vision: ganglion cells as circadian photoreceptors
- Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice
- Lux vs. wavelength in light treatment of Seasonal Affective Disorder
- Shortāwavelength enrichment of polychromatic light enhances human melatonin suppression potency
Hormone regulation
- Phototransduction by retinal ganglion cells that set the circadian clock
- The impact of light from computer monitors on melatonin levels in college students
- Circadian rhythmsāfrom genes to physiology and disease
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Light pollution, circadian photoreception, and melatonin in vertebrates
Lighting Design Considerations
- Color appearance models
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Acute alerting effects of light: A systematic literature review
- Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision
- Melanopsin and rodācone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans
Well-being
- Acute alerting effects of light: A systematic literature review
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Can light make us bright? Effects of light on cognition and sleep
- Light pollution, circadian photoreception, and melatonin in vertebrates
- Kruithof's rule revisited using LED illumination