Summary
This paper discusses the interaction between sleep homeostasis and the circadian timing system, and how it affects human cognitive brain function, specifically cortical excitability.
Categories
Sleep and insomnia: The paper discusses the role of sleep homeostasis in human cognitive brain function and cortical excitability.
Alertness and performance: The paper discusses how the interaction between sleep homeostasis and the circadian timing system can affect alertness and performance.
Cognitive function and memory: The paper discusses how the interaction between sleep homeostasis and the circadian timing system can affect cognitive function and memory.
Education and learning: The paper discusses how the interaction between sleep homeostasis and the circadian timing system can affect learning.
Hormone regulation: The paper discusses the role of the circadian timing system, a biological clock that regulates hormones, in human cognitive brain function and cortical excitability.
Lighting Design Considerations: The paper discusses how strictly controlled environmental conditions, including light, can affect the interaction between sleep homeostasis and the circadian timing system.
Well-being: The paper discusses how the interaction between sleep homeostasis and the circadian timing system can affect overall well-being.
Author(s)
J Ly
Publication Year
2015
Related Publications
Sleep and insomnia
- The twoāprocess model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- The impact of light from computer monitors on melatonin levels in college students
Alertness and performance
- The twoāprocess model of sleep regulation: a reappraisal
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- Acute alerting effects of light: A systematic literature review
- Can light make us bright? Effects of light on cognition and sleep
- Shining light on memory: Effects of bright light on working memory performance
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The twoāprocess model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Education and learning
- Color appearance models
- Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization
- The role of the circadian system in the etiology and pathophysiology of ADHD: time to redefine ADHD?
- How to report light exposure in human chronobiology and sleep research experiments
- Simulation-aided occupant-centric building design: A critical review of tools, methods, and applications
Hormone regulation
- Phototransduction by retinal ganglion cells that set the circadian clock
- The impact of light from computer monitors on melatonin levels in college students
- Circadian rhythmsāfrom genes to physiology and disease
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Light pollution, circadian photoreception, and melatonin in vertebrates
Lighting Design Considerations
- Color appearance models
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Acute alerting effects of light: A systematic literature review
- Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision
- Melanopsin and rodācone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans
Well-being
- Acute alerting effects of light: A systematic literature review
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Can light make us bright? Effects of light on cognition and sleep
- Light pollution, circadian photoreception, and melatonin in vertebrates
- Kruithof's rule revisited using LED illumination